Magnesium sulphate induces preconditioning in preterm rodent models of cerebral hypoxia-ischemia
نویسندگان
چکیده
BACKGROUND Brain injury in preterm infants represents a substantial clinical problem associated with development of motor impairment, cognitive deficits and psychiatric problems. According to clinical studies, magnesium sulphate (MgSO4) given to women in preterm labor reduces the risk of cerebral palsy in the offspring but the mechanisms behind its neuroprotective effects are still unclear. Our aim was to explore whether MgSO4 induces tolerance (preconditioning) in the preterm rodent brain. For this purpose we established a model of perinatal hypoxia-ischemia (HI) in postnatal day 4 rats and also applied a recently developed postnatal day 5 mouse model of perinatal brain injury. METHODS Postnatal day 4 Wistar rats were exposed to unilateral carotid artery ligation followed by 60, 70 or 80 min of hypoxia (8% O2). On postnatal day 11, brains were collected and macroscopically visible damage as well as white and grey matter injury was examined using immunohistochemical staining. Once the model had been established, a possible preconditioning protection induced by a bolus MgSO4 injection prior to 80 min HI was examined 7 days after the insult. Next, a MgSO4 bolus was injected in C57Bl6 mice on PND 4 followed by exposure to unilateral carotid artery ligation and hypoxia, (10% O2) for 70 min on PND 5. Brains were collected 7 days after the insult and examined with immunohistochemistry for grey and white matter injury. RESULTS In rats, a 60 min period of hypoxia resulted in very few animals with brain injury and although 70 min of hypoxia resulted in a higher percentage of injured animals, the brains were marginally damaged. An 80 min exposure of hypoxia caused cortical tissue damage combined with hippocampal atrophy and neuronal loss in the C3 hippocampal layer. In the rat model, MgSO4 (1.1 mg/g administered i.p. 24 h prior to the induction of HI, resulting in a transient serum Mg2+ concentration elevation to 4.1 ± 0.2 mmol/l at 3 h post i.p. injection) reduced brain injury by 74% in grey matter and 64% in white matter. In the mouse model, MgSO4 (0.92 mg/g) i.p. injection given 24 h prior to the HI insult resulted in a Mg2+ serum concentration increase reaching 2.7 ± 0.3 mmol/l at 3 h post injection, which conferred a 40% reduction in grey matter injury. CONCLUSIONS We have established a postnatal day 4 rat model of HI for the study of preterm brain injury. MgSO4 provides a marked preconditioning protection both in postnatal day 4 rats and in postnatal day 5 mice.
منابع مشابه
Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...
متن کاملHyperbaric oxygen modalities are differentially effective in distinct brain ischemia models
The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears...
متن کاملUpdate on the use of magnesium sulphate for fetal neuroprotection in preterm birth.
The administration of magnesium sulphate to mothers at risk for preterm birth for fetal neuroprotection has demonstrated to reduce the risk of cerebral palsy and gross motor dysfunction by 30-40%. Although there is controversy regarding the regimen of administration of magnesium sulphate, the gestational age limit, the extent of its potential benefit or even if it provides any benefit, current ...
متن کاملMechanisms of Protection in Ischemic Preconditioning
Organisms have developed complex endogenous defenses to counter environmental stress. The successful resistance to adversarial conditions, such as calorie or oxygen deprivation, has ensured that the strongest will survive. This lies at the root of preconditioning, that is, what is survived will strengthen; surviving mild forms of injury leads to tolerance of otherwise noxious injury. Preconditi...
متن کاملRole of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice
Objective(s): Morphine dependence (MD) potently protects heart against ischemia reperfusion (IR) injury through specific signaling mechanisms, which are different from the pathways involved in acute morphine treatment or classical preconditioning. Since opioid receptor density changes post cerebral ischemia strongly correlated with brain histological damage, in the present study, we tried to el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
دوره شماره
صفحات -
تاریخ انتشار 2018